

Perspectives on NASA Onboard Processing Needs for Future Space Missions

Presented at Raytheon 2001 PSTN Processing Technology Expo

21 June 2001

Charles P. Minning
New Millennium Program Technologist/Avionics

Jet Propulsion Laboratory Pasadena, CA 91109-8099

e-mail: charles.p.minning@jpl.nasa.gov

Topics

- Background Information
- Emerging Scenarios for Science Data Acquisition
 - Earth Observation Missions
 - Deep Space Missions
- Downlink Bottlenecks/Need for a Paradigm Shift
- Validating the Paradigm Shift -- New Millennium Technology Validation Flights
- Summary

Background -- How We Do Things Today

- Manpower intensive processes and procedures for S/C operations, health monitoring and problem fixing
- Dealing with science data
 - Data compression
 - *Both lossless and lossy algorithms used
 - *Choice of compression method depends on application
 - Encode/Packetize
 - Downlink

This scheme works fine if there is sufficient downlink bandwidth and manpower available

EO3 (GIFTS) Signal Processing Chain

Future Developments that will Affect Management of NASA Space Assets

- Formation flying of different S/C to observe the same object on the Earth's surface (large amounts of data generated)
- Constellations of satellites around Earth and other planets
 - Observe Sun/Earth interactions
 - Mars Network
- Many other deep space missions in progress simultaneously

Deep Space Network will have difficulty monitoring missions, and downlink bandwidth for Earth observing S/C won't be able to handle the data rates

Data Rate Trends for High Data Rate Instruments on Earth-Observing Spacecraft

Instrument	Technology Readiness Date					
	2000	2003	2006			
Hyperspectral	1.6 Gbps	3.2 Gbps	40.3 Gbps			
SAR	0.18 Gbps	1.3 Gbps	4.8 Gbps			
LIDAR	5.0 Mbps	5.0 Mbps	5.0 Mbps			

These high data rate instruments will be built; the question is what percentage of the data can be cost-effectively stored and transmitted

PM Train: Formation Flying Concept for Earth-Observing Spacecraft

That Poor Guy on the Ground

Constellations of Spacecraft for Deep Space Science Missions

	Mission	Number of Spacecraft	S/C Mass, kg	Orbit
E	Magnetospheric Multiscale	5	240	Apogees from 12 to 12 Re
Near-Term	Geospace Electrodynamic Connections	4	600	130 x 2000 km
	Mag Constellation	100	10	10 – 35 Re
Mid- Term	Inner Mag Constellation	42	10	2 – 12 Re
Ę	Dayside Boundary Constellation	39	10	2 – 20 Re
Far-Term	Solar Flotilla	12	50	Heliocentric (Perihelion ~0.2 AU), Various Inclinations
4	Inner Heliospheric	12	50	Heliocentric (Perihelion ~0.2 AU), Various Inclinations

Monitoring these spaces plus those associated with other missions severely strains the Deep Space Network

Downlink Bottlenecks

Only 1-10% of the data will get to the ground CRF case – two orbits of data

Source: JPL Publication 99-4;

High Data Rate Instrument Study

Autonomy/Onboard Processing -- One Approach to for Alleviating Downlink Bottleneck and Overloaded Deep Space Network Problems

- Autonomy "cuts" across all spacecraft subsystems
 - The primary S/C functional elements, i.E., power, propulsion, GNC, CGH, are managed in real-time thus relieving workload on ground controllers:
 - GNC sensors to characterize environment
 - GNC actuators to maneuver for observations or avoidance hazard
 - Navigation and instrument control to make observations
 - Data storage/memory, data information extraction, communications of opportunity
 - Payload care, control and protection in uncertain environments
- Most deep space missions can benefit from S/C autonomy
 - Deep space communications latency times and unknown environments make ground intervention for near real-time (hours for comet missions and seconds for Landers) decision making virtually impossible:
 - System autonomy is needed to achieve goal(s) or sub-goals
 - System on-board decision making to close planning and control loops
- Autonomy "cuts" across all mission disciplines

Engineers

- Mission design
- S/C design
- Mission operations
- Scientist (onboard processing to relieve data rate bottleneck)

Hilms

- Observation design
- Science data analysis
- Instrument operations
- Autonomy "cuts" across a multiplicity of space missions
 - Single S/C, Rovers, Constellations, Landers, Insitu Laboratories

Potential Applications for Autonomy/Onboard Processing for Earth Observation Missions

- Autonomy (minimize intervention from ground controllers)
 - Orbit maintenance (for single S/C)
 - Fix problems on S/C
 - Constellation configuration/reconfiguration, maintenance and control
- Onboard processing (detecting/acting on changes)
 - Active volcanoes
 - Track storms/floods
 - Track iceberg formation/movement
 - Other applications

Potential Applications for Autonomy/Onboard Processing for Deep Space Missions

Autonomy

- Plan/execute mission without intervention from ground controllers
- Fix problems on S/C without intervention from ground controllers
- Constellation configuration/reconfiguration, maintenance and control

Onboard processing

- Quick response to stellar events (gamma ray bursts, solar flares, etc.)
- Planetary imaging
 - → Volcanic eruptions on lo
 - Crustal ice movement on europa
 - Advance/retreat of Mars polar caps
- Other applications
- Management of information from Mars Network

Volcanic Eruptions on Io: Example of Capturing Opportunistic Science

October, 1999

November, 1999

February, 2000

Increased Volcanic Activity Detectal

Impediments to Implementing Autonomy/Onboard Processing in NASA Space Missions

- Implies major procedural changes
 - New design, simulation, and operation procedures
 - Major paradigm shift leading to fear of losing control
- Combined effects of system/subsystem complexity

The New Millennium Program Fills a Critical Role in Space Science Technology Development

Technology Development

Technology Validation/ Risk Reduction/ Technology Infusion

Technology Acceptance

Autonomy/Onboard Processing Technologies Being Validated on NMP Missions

Autonomy Technologies	DS1	E01			ST7*
Guidance Navigation &			,		
Control		[
 Onboard trajectory 					
determination				•	
 Trajectory planning 					
 Maneuver design & 					
execution					
Feature identification					
and tracking					
Target relative					
maneuvering	ļ				;
Hazard collision					
avoidance Multiple S/C	ļ				
Formation keeping					
 Coordinated Platforms 					
 Resource sharing 					
 Science data 					
gathering					
 Information fusion 					
Science observation					
 Engineering sensor data 					
fusion					
 Science data fusion 					
 Re-targeting to repeat 			 		
science observations					
 Capture opportunistic 					
science					
Optimize science					
downlink data					
Onboard science event					
detection	L				

Autonomy Technologies	DS1	EO1		1,		
Goal-based commanding	USI	<u> </u>			[S17*
Task decomposition			 		-	
Automated sequencing			 			
Event driven sequencing			 	<u> </u>	 	
Onboard planning	<u> </u>		<u> </u>		 	
Automated planning					 	
 Planning in uncertain environments 						
Dynamic planning & plan optimization						
Contingency planning					 	
Real time scheduling						
S/C resources						
 Resource management and optimization 						
Self monitoring and selective health						
reporting						
Anomaly resolution						
Model-based fault protection						
 Flexible contingent response 						
Response to unanticipated faults						
Autonomous Mission Operations						
 Autonomous scheduling of ground stations 					· · · · · · · · · · · · · · · · · · ·	

^{*} Technologies are currently in competitive selection phase of project

Launch Schedule for NMP Validation Flight

	FY	99	00	01	02	03	04	05
DS1				- 07	UZ.	- 03	04	05
DS2		▼01/99						
EO1			▼	11/00				
ST5								 ▼01/05
EO3							0	7/05 ▼
ST6						▼	—	
ST7							▼	

Stay Tuned!

- ST6 Downselect for Formulation Refinement -- 12/01
- ST7 Technology Selection Announcement -- 7/01
- New Millennium Program Website www://nmp.jpl.nasa.gov
- NASA Office of Space Science Roadmaps

http://sse.jpl.nasa.gov (Solar System Exploration)

http://universe.gsfc.nasa.gov (Structure & Evolution of the

Universe)

http://sec.gsfc.nasa.gov (Sun - Earth Connection)

http://origins.jpl.nasa.gov (Origins)

NASA Office of Earth Science Roadmaps

http://esto.nasa.gov

Summary

- Autonomy/onboard processing techniques offer solutions to complex problems anticipated for future NASA science missions
- Implementation of autonomy/onboard processing requires a major paradigm shift \(\triangle \) acceptance will be slow in coming
- Nasa's New Millennium program is validating autonomy and onboard processing technologies for future science missions to mitigate risk to first users in science missions